Abstract For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs
نویسندگان
چکیده
For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavyand light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavyand light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.
منابع مشابه
Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots
For InAs/GaAs(001) quantum dot (QD) system, the wetting layer (WL) evolution and its temperature dependence were studied using reflectance difference spectroscopy and were analyzed with a rate equation model. WL thicknesses showed a monotonic increase at relatively low growth temperatures but showed an initial increase and then decrease at higher temperatures, which were unexpected from a therm...
متن کاملEvolution of wetting layer in InAs/GaAs quantum dot system
evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indi...
متن کاملIn situ scanning tunneling microscopy of InAs quantum dots on GaAs(001) during molecular beam epitaxial growth
Arrays of InAs quantum dots (QDs) have been studied using in situ scanning tunneling microscopy (STM) during their growth by molecular beam epitaxy on GaAs(0 0 1). At a substrate temperature of 400 C under As4 flux, both the QDs and the underlying step-terrace structure of the wetting layer (WL) are found to be static, with neither step-flow nor QD ripening observed. Higher resolution images of...
متن کاملOptical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure
We have studied the electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure, i.e., with an In0.15Ga0.85As quantum well (QW) as capping layer above InAs quantum dots (QDs), via temperature-dependent photoluminescence, photo-modulated reflectance, and rapid thermal annealing (RTA) treatments. It is shown that the carrier transfer via wetting layer (WL) is impeded according...
متن کاملTemperature-Dependent Site Control of InAs/GaAs (001) Quantum Dots Using a Scanning Tunneling Microscopy Tip During Growth
Site-controlled InAs nano dots were successfully fabricated by a STMBE system (in situ scanning tunneling microscopy during molecular beam epitaxy growth) at substrate temperatures from 50 to 430°C. After 1.5 ML of the InAs wetting layer (WL) growth by ordinal Stranski-Krastanov dot fabrication procedures, we applied voltage at particular sites on the InAs WL, creating the site where In atoms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006