Abstract For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs

نویسندگان

  • Y. H. Chen
  • X. L. Ye
  • Z. G. Wang
چکیده

For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavyand light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavyand light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots

For InAs/GaAs(001) quantum dot (QD) system, the wetting layer (WL) evolution and its temperature dependence were studied using reflectance difference spectroscopy and were analyzed with a rate equation model. WL thicknesses showed a monotonic increase at relatively low growth temperatures but showed an initial increase and then decrease at higher temperatures, which were unexpected from a therm...

متن کامل

Evolution of wetting layer in InAs/GaAs quantum dot system

evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indi...

متن کامل

In situ scanning tunneling microscopy of InAs quantum dots on GaAs(001) during molecular beam epitaxial growth

Arrays of InAs quantum dots (QDs) have been studied using in situ scanning tunneling microscopy (STM) during their growth by molecular beam epitaxy on GaAs(0 0 1). At a substrate temperature of 400 C under As4 flux, both the QDs and the underlying step-terrace structure of the wetting layer (WL) are found to be static, with neither step-flow nor QD ripening observed. Higher resolution images of...

متن کامل

Optical identification of electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure

We have studied the electronic state levels of an asymmetric InAs/InGaAs/GaAs dot-in-well structure, i.e., with an In0.15Ga0.85As quantum well (QW) as capping layer above InAs quantum dots (QDs), via temperature-dependent photoluminescence, photo-modulated reflectance, and rapid thermal annealing (RTA) treatments. It is shown that the carrier transfer via wetting layer (WL) is impeded according...

متن کامل

Temperature-Dependent Site Control of InAs/GaAs (001) Quantum Dots Using a Scanning Tunneling Microscopy Tip During Growth

Site-controlled InAs nano dots were successfully fabricated by a STMBE system (in situ scanning tunneling microscopy during molecular beam epitaxy growth) at substrate temperatures from 50 to 430°C. After 1.5 ML of the InAs wetting layer (WL) growth by ordinal Stranski-Krastanov dot fabrication procedures, we applied voltage at particular sites on the InAs WL, creating the site where In atoms, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006